
AD-A264 078 A&- 06 fo

GRAFTED - GRAPHICAL FAULT TREE EDITOR

FRANK J- TKALCEVIC AND NORBERT M. BURMAN

MRL-GD-0043

DTIC
ELECTF

SMAY 13 1993DC

A PPRO VED (.,,,w).,-. of Australia

IFOR PUBLIC RELEAS

93-10332

93 5 11 098 (2

' \1D' lI'TS 1 L X I .K
IDSTO

GRAFTED - GRAphical Fault Tree
EDitor: A Fault Tree Description

Program for Target
Vulnerability/Survivability Analysis

Frank J. Tkalcevic and Norbert M. Burman

ML Geneal Document
MRL-GD-O00

Abstract

A computer program GRAFTED, "GRAphical Fault Tree EDitor', has been written to
simplify data entry and modification of component fault tree descriptions (FTD) used in
military platform vulnerability/survivability analysis procedures. GRAFTED utilises a
unique, graphical, screen based data entry procedure to define and display both
individual system component parameters and their hierarchical relationship in the overall
system FTD. The generated component and system FTD output is in a format which is
directly readable by the MRL version of the General Vulnerability Assessment Model
(GVAM), computer programs.

Although GRAFTED uws specifically designed to generate FTDs for GVAM, it could
be easily modified to accommodate data input formats and FTD output for assessment
procedures which require user friendly data entry and graphical fault tree editing and
visualisation.

Accesion For

NTIS CRA&I
DTIC QUAIuI INSPECTRDP 1 DTIC TAB 1SUnannounced Q

Justitication

Distribution__

MATERIALS RESEARCH LABORATORY Avaiallabity Ces
Avai and torDhst SM0

V

Cdite Aveue, M, arnog
Victoria, 3032 Ausfral

Tokpuowm (03) 246 8111
Fa: (03) 246 89
0 Coumwuvumle of AUi'udLM 1992
AR No. 006-911

APPROVED FOR MUDUC RELEASE

-'--l • l-- iV wl w P

Contents

1. INTRODUCTION 5
1.1 An overoiew of the work 6

2. HARDWARE AND SOFTWARE REQUIREMENTS 7

3. PROGRAM DESCRIPTION 7
3.1 Tree Descrition Basics 7
3.2 Fault Tree Editor Screen Layout 10
3.3 Program Oerview 11
3.4 Definitions 13

3.4.1 Program Data Types and Structures 13
3.4.2 Global Variables 15

4. FILE FORMATS 18
4.1 Component File (.cmp) 18
4.2 Fault Tree File (.fta) 19

5. FUTURE CHANGES 21

6. ACKNOWLEDGEMENTS 22

7. REFERENCES 22

APPENDIX A - Functions 24

INDEX OF FUNCTIONS AND SUBROUTINES 60

il -i I - i -

GRAFTED - GRAphical Fault Tree
EDitor: A Fault Tree Description

Program for Target
Vulnerability/Survivability Analysis

1. Introduction

GVAM, the "General Vulnerability Assessment Model", is a suite of computer
programs [1] initially developed at the Canadian National Defence, Defence
Research Establishment Valcatier, (DREV) to evaluate the vulnerability -
survivability of military platforms and in particular naval surface combatants.
Assessment of platform vulnerability - survivability using GVAM, requires the
evaluation of the effects of a specified threat, in terms of its fragmentation and
blast performance, on the individual platform components of a specified system
or complete platform. A major part of this assessment requires the evaluation of
the effect of component interconnection, interdependence and redundancy level.
To perform this task effectively, GVAM requires the generation and utilisation of
a fault tree description (FTD) of the platform components and systems, based on
their hierarchical interconnection and interdependence.

In the original DREV version of GVAM, the generation of the component FTD
for a platform was a long and complex data entry procedure. Due mainly to its
complexity and text based format, the original GVAM FTD files were found to be
extremely difficult to interpret once generated, and consequently almost
impossible to validate and edit with any degree of confidence. The requirement
to model the FFG-7 surface combatant for RAN, with an FTD having an estimated
5000 individual system components, necessitated the development of an enhanced
FTD component data and inter-connectivity editor, which provided a user-
friendly, graphical visualisation of the platform fault tree and its components.

" -. . - - - - - - o -

1.1 An overview of the work

After struggling with the text format of the fault tree analysis section of the
original GVAM ship vulnerability assessment computer code, it was decided to
develop a graphical input program.

The format of the fault tree data files were the first to be modified. Version 1 of
GVAM treated each threat module as a separate occurrence, and hence required a
separate data file, using similar data to that used in the fault tree, but differing in
the attribute description of the components. The DREV plan for GVAM 2 was to
develop a single file that could be shared between the GVAM threat modules.
This was also the approach taken at MRL.

The data files were split in two: a Component File, and a Fault Tree file. The
component file is a simple table of data containing a component identifier and
columns of attributes describing the component. The Fault Tree file contains the
complex description of the fault tree, ie. the relationship between the components
in the component file.

This change did not resolve the problem of the complexity of the fault tree
description file format, which became even more difficult to interpret visually.
However, this situation was considered acceptable since the graphical interface
would conceal this complexity.

The design of the graphical interface was highly dependent on the capabilities of
the Tektronix graphics terminals. These terminals are a vector based system, and
generally performed poorly because of the relatively slow physical link to their
host. (Originally a 38400 baud serial link, but later improved to a shared memory
link with the work station.) By using the terminal's vector graphics to advantage,
graphical response and functionality were markedly improved.

The physical tree display was simply clipped through a viewing window,
making graphical programming of the viewing and scrolling functions for the tree
relatively simple to code. The graphic input device (GIN) operation was integral
to the terminal, such that the programming details of cursor management became
minimal.

The terminal speed limitations produced severe difficulties with program
responsiveness. Fast scrolling through the tree was a major problem because the
GIN requests back-logged and, when a serial connection was used, often locked
the terminal. A polling technique was employed to only update the display when
there was no input waiting.

Loading a large tree into the terminal took some time, but due to the extensive
terminal video memory, the entire tree could be stored once and then simply and
quickly switched into and out-of the view window.

The menu system was implemented by defining objects as terminal segments
with unique identifiers. The icon button menu automatically returned a code
indicating it had been selected, which could then be acted upon by the program.

Interactive text areas were handled using the terminal's dialogue areas
(standard text handling). The terminal has multiple font sizes, which allowed the
use of a relatively small text entry window for the component description.
Although the text writing speed was quite slow in this mode, this approach was
simpler to implement than by using the terminals graphic text capabilities
(graphtext). The slow text response was highlighted by the sluggish movement of
the cursor through the component description text area. Similar difficulties were

6

encountered with the scrollable list, where the terminal down-loaded the entire
text list into a window before displaying it.

The first version of GRAFTED proved a successful program, identifying the
capabilities of the terminal and the requirements of the users. It also identified the
requirement for GRAFTED 2, in which the graphics performance would be
improved, and user friendliness enhanced with additional features.

2. Hardware And Software Requirements

The software was written on a Tektronix (TEK) 4235/4301 graphics
terminal/UNIX workstation combination. The program was written in the
Berkeley 4.2BSD implementation of the C language, and the graphics library to
access the terminal is Tektronix STI (Standard Tektronix Interface) 12,3,4]. The
program has been tested to run on Tektronix 4235 and 4224 terminals, and should
run on other terminals in the 4220/4320 and 4230/4330 range.

3. Program Description

3.1 Tree Description Basics

The terminology used to describe a fault tree in the GRAFTED program is that
used by computer programmers to describe a data storage tree. Figure 1.
represents a typical tree structure.

BranchRoot Node

Child ofParent of

Figure 1: Node represenation of a typical fault tree structure.

The fault tree structure is defined in terms of nodes and branches, where the
nodes represent the objects in the tree, and the branches represent the relationship
between the nodes. The node at the top of the tree is called the ROOT node.
Individual nodes can have parents and children. The relationship between a child

7

node and its parent node is such that the child is positioned at least one level
below its parent and attached to it by a branch.

GRAFTED utilises six different types of nodes. Each of these node types is
illustrated in the sample fault tree shown in Figure 2 which is a small segment
from an imaginary FFG Frigate fault tree description shown in Figure 3.

At the top of the fault tree in Figure 2. is the ROOT node which is identified by
the title for the entire fault tree. The ROOT node is represented by a double-line
bounded rectangle. The next level of the tree contains the Primary Mission Area
(PMA) nodes. In this example there are two PMAs, a 35mm Gun and a Radar
Unit, which are drawn as double-line bounded parallelograms. At the next level,
representing the sub-PMAs, the nodes are drawn as single line bounded
parallelograms. In Figure 2. the Sub-PMA examples are the Electrical Supply.
Below the sub-PMAs is the component level of the model which defines the
overall functional dependency of the system.

sut-PMA Z-ius- Zvýrý =

Component W:rD Wire

Redundancy R

Wge ire

Module Generator Generator

(subtreel

Figure 2: Sample FFG fault tree description showing six basic node types.

FFG Frigate

35mm Gun

WireWire

- Wire \ i Generator

Radar

Figure 3: Schematic of FFG Frigate system description as per Figure 2fault tree.

In the example shown in Figure 2. the 35 mm Gun and Radar Unit are
dependent on their Electrical Supplies which are attached to a Generator through
Wire Cables. For each PMA the Wire Cable divides in two and terminates at the
Electrical Generator. In this scenario, the Wires are components and are drawn
as rounded rectangles. At the point where each Wire divides, we have a
redundancy node, the circle with an R in the middle. This node type indicates
that the functional chain has a redundant or secondary path, which can be used in
the event of the other failing. For this example the dependency continues through
separate Wires or routes to the Generator.

The Generators in Figure 2 are defined as modules, or sub-trees and each is
represented as a single line bounded rectangle. Each module is a reference to the
fault tree description of the Generator and is treated as a separate unit. The actual
Generator fault tree description might include the dependency of the Generator
on the Fuel Lines, which are in turn dependent on the Fuel Tank. Once defined, a
module can be used as often as necessary and appears each time as a single
module node.

As shown in the example of the Redundancy node, a node can have both many
children and many parents, where the parent and child nodes are the upper and
lower nodes of a branch respectively. As the model increases in size and
complexity it becomes necessary to subdivide the model to facilitate data entry
and tree visualisation. To simplify model development and data entry, the fault
tree description is generated using a technique of successive refinement. This
approach utilises the step-wise development of successively more complex
models from an initial uncomplicated general system dscription. Ideally, there
should be only a small number of nodes to each sub-tree. Utilising this approach
the example shown in Figure 2 can be much better described by the tree structure
shown in Figure 4.

9

| n h m(N m • mm m mm mnamm m mmw m mml.w mm- mm - -m 0

Wre

S35rnmm Gun Power Radar Power Generator

WWire Wir
VII

F-il Jucto wir Jucto

Generator Gene Fuel Tank

Figure 4: Example of refinement and modularisation offault tree as in Figure 2.

3.2 Fault Tree Editor Screen Layout

The GRAFTED fault tree editor screen layout is schematically shown in Figure 5.

10

~~~~~~~~- - -•u m m aa °m " : ml N i i l~m lmm•wdmL,,, ~ N'Nmm lml~m •



i Display Dialog

Tree Display
View -7 ýF

ei ZMenu Selection

hmessage Dialog Area

Figure 5: Schematic of GRAFTED fault tree editor screen layout.

This screen has been designed to display two main areas. The first area is
devoted entirely to displaying the tree and is identified as the Tree Display View.
This area is actually only part of a much larger screen which is seen as a window
through the second or front display. Being behind the front display the Tree
Display View is out of view of the Graphical Input (GIN) device. The coordinate
system of the Tree Display View is the graphic tree's coordinate system thus
allowing the window to move over the tree by changing the window extents as

shown in Figure 6.
The front view is the entire screen, sitting on top of the first or tree view. This is

mainly a GIN view, allowing the user to use the GIN device to select the menu
and other options. This view includes the Menu Selection Area, which has been
set up as a single graphics segment with each selectable region defined with a
different "PICK-ID" (selection identifier).

In addition, this screen uses several dialog areas. The Message Dialog Area is
permanently set up as the bottom line of the screen. It is used to display warnings
and as a general prompt area. The Component Display Dialog Area is used to
display the current node data and provides the facility to edit that data. This
screen area also serves to display the scrollable lists of the file.menu, add branch,
jump to node and jump to module items.

Each graphic subtree may be composed of many segments. Each node is made
up of a segment with its pivot point at its centre. The nodes are positioned in the
view, and then the links between them are drawn as a single segment.

For further information on the operation of GRAFTED the reader is referred to
the GRAFTED User Manual [51 which provides more comprehensive information
on fault tree and component data entry as well as a worked fault tree example.

11



- - /Current Display Window

, View 2 - Tree Coordinate System

-..

\ View I User Interface

Figure 6: Schematic represenation of relationship between the GRAFTED User Interface
View and Tree Display View windows.

3.3 Program Overview

The program is implemented in sixteen C language source code modules (files).
The initialisation module, fta.c, contains the C language main() function. The
function behaves as follows -

main()
set up graphics display

set up fault tree system variables

ifa tree name is passed as a parameter,
load the tree

call interactive routine to process user input

reset the display to initial state
end main

The main controlling section of the program is the function interactiveO, which
resides in source module menus.c. The function interactiveO will process the user
input and execute the relevant functions. The operation of the function is outlined
in the following pseudo-code.

12



interactive()
display tree section
move cursor
display node text information
main loop

get GIN input if available
if not,

update the text display area
wait for user input

decode user input
execute selected user option

end main loop
end interactive

The main loop will first retrieve user input. It will continue to retrieve user
input until none is waiting, and only then will it redisplay the screen. This
method was used because of the slow data transfer rates over the terminal lines.
Situations would occur where many movements around the screen caused errors
due to communications data loss because of the large volume of traffic. It was
decided to only update the text area when there was no input waiting.

In the main loop of the program, there are two switch statements, one to decode
the user input and another to execute the function. Two statements were used to
allow multiple ways to execute a function, e.g. to delete a node you can either
select the delete node option from the menu, or pressing the "Remove" key. The
other functions executed from the main dispatcher can be found in Appendix A.

Figure 7 shows the steps taken when changes are made to the tree. Deleting and
adding nodes modifies the data structures representing the tree. Therefore, the
create.display-treeO function is called to update the internal representation of the
tree first. Editing the node, at most, will only change its graphical appearance, so
the tree will only need to be redisplayed by calling function display-treeO.

i II

Delete Add Edit
I -

createdisplaytree0

display_tree0) fixup()

Figure 7: Schematic of the operation of the fault tree editing functions.

The function display-treeO, will erase the current tree, call the fixupo routine to
reposition the nodes in an orderly fashion, and then draw the tree. The tree is
drawn by positioning node graphic segments, and then drawing the links between
them.

13

ll I I w



3.4 Definitions

3.4.1 Program Data Types and Structures

boolean (enum) - boolean is a logical true/false data type with the values defined
as FALSE=O,TRUE=l

type..ofnode (enum) - enumerated type containing the possible node types -
ROOT, PMA, SUB-PMA, MODULE, COMPONENT, REDUNDANCY,
MODULE-REFERENCE.

node_type (struct) - main data type for storing nodes.

typedef struct ptr..node {
/*Node data */
type-of node type;
char *description;
datatype *data;
float effectiveness;

/* Tree information */
int *child,
int children;
int *parent;
int parents;
int parent array-size;

/* Graphic Tree information /
int xl,x2;
long int x,y;
int module-id;
int graphic-id;
int dx,dy;
int index;
boolean used;
struct ptrnode *next, *previous;

J nodetype;

* type (type-of node) - type of node.
* index (int) - the node-list index position of this node.
* description (char *) - character string containing the description of node.

Limited in size to 132 (by MAX-DESCRIPTION), but the limitation was only
set for the temporary editing string.

* data (data-type') - for components only. Points to a block of data containing
the data describing the component. NULL for other types.

* effectiveness (float) - data used for components and sub-PMAs. Defines how
much a component contributes when it is redundant, or how much a sub-
PMA contributes to a PMA.

14



"* child (int ), children (int), childarray.size (int) - dynamic array parameters
containing node-list indexes to the children of this node. Initially set to 0
size on creation. child is the pointer to the array, children is the number
of children in the array, and child.array-size is the size of the array.
When children are added or subtracted, element placing is kept
contiguous.

* parent (int*), parents (int), parenLarray~size (int) - similar to children set of
variables. Array holds indexes to all parents of the node.

"* xl (int), x2 (int) - specifies the start and end x coordinates of each node. It is
used in fixup_tree0 when positioning nodes, to keep them evenly spaced.

"* x (long int), y (long int) - xy position of the graphic node segment in TEK
display space. The value is set in display-node0 when the position is
calculated. It is used when moving the cursor to see if the cursor position
is outside the current window.

"* module-id (int) - node index used by module references to identify which
module it references.

"* graphic-id (int) - TEK terminal segment id of the graphic display of the node.
Used by graphics routines to make node visible, and to change its index to
highlight the cursor position.

* dx (int), dy (int) - size of the graphic node in TEK display units. The sizes are
half the height and width.

"* used (boolean) - flag used by the fixup-tree0 routine indicating that the node
has been positioned.

"* next, previous (struct ptr-node ) - pointers to other nodes on the same
graphic display level. Points to the next and previous nodes via a linked
list.

data-type (struct) - structure used to hold data for components.

typedef struct
int component_id;
int block-id;

float length;
float width;
float height;
float diameter;
float volume;

int skinmaterial;
float skin-thickness;
int hardnessindex;
float packing-density;
intfire-resistance;
int panel-identifier;
float wallgap;
float shock-resistance;
J data type;

15



"* componentid (int) - unique integer to identify each component.
"* block-id (int) integer identifying the block (or compartment) this component

belongs to.
"* length (float), width (float), height (float), diameter (float), volume (float) -

variables used to calculate the volume of the component. Volume can be
entered as length x height x width, length x diameter, or just as the
volume. Units in cm or cm 3.

"* skinmaterial (int) - identifier (1-2) identifying the type of material on the skin
1=Steel, 2=Aluminium.

"* skin-jhickness (float) - equivalent skin thickness in millimeters.
"* hardnessindex (int) - identifier (1-41 specifying hardness type 1=Electronic,

2=Electrical, 3=Machinery, 4=Human.
"* packing..density (float) - % density of component (0-100%).
"• fire.resistance (int) - reservzd integer to be used in the fire threat component

of the GVAM program suite.
"* panel-identifier (int) - integer describing wall panel closest to the component.
"* wallgap (float) - distance in cm, from the component to the selected wall

panel.
"* shockresistance (float) - shock resistance of the component in m/s 2.

3.4.2 Global Variables

node-list (node-type **) - node-list is an array of pointers which holds each of
the nodes in the fault tree. Initially the array starts out being a NULL pointer,
and then additional memory is allocated to the array as it grows in size. This
involves releasing the memory belonging to the old array and allocating it a
larger block of memory. This method was chosen so that no limits were set on
the size of the tree (i.e. compared to predefined array sizes). Associated
variables that belong with nodelist are node_list_size and nodes.

nodelistsize (int) - holds the number of places available in the nodelist array.
This is initially 0.

nodes (int) - this integer holds the actual number of nodes in the nodelist array.
As nodes are deleted from the array, the old entry is only replaced with a
NULL, hence the list is scanned to find a new place. This is done to keep the
indexes of children and parents correct. Hence, nodes only indicates the
number of valid items in the array, no the index of the last item.

module list (node-type **) - modulelist is analogous in behaviour to node-list.
module-list holds MODULEREFERENCEs, which are special cases of
MODULE nodes, only used for display purposes. The
MODULE-REFERENCE is necessary because of the dual purpose of the node
data type, being required to store component data, and graphical display data.
This lead to problems with modules because they are required to be displayed
in more than one place and must store each display position separately. To
overcome this, the MODULE definition is left in the tree with its own
positioning information, while any reference to a module (i.e. a link from

16



another node) is defined as a MODULE-REFERENCE and is created in the
module-list array. Child pointers to a MODULEREFERENCE are negative.
When another node references a MODULE-REFERENCE, they multiply the
index by -1 to make a positive index. To make this work, the first element of
module-list[], module_list[0], is always undefined because we can't distinguish
between zero and negative zero.

module-list-size (int) - the total number of places available in the modulesjlist
array.

modules (int) - the number of module references in the module_list array.

jump-location (int) - holds the index of a node in the node-list[] array of where
the next major jump is going to be. Used for communication between functions
maino and interactive(.

modified (boolean) - flag indicating whether the current fault tree in memory has
been modified. Is checked when the user attempts to quit or load a new tree. Is
set when the tree is changed, ie. nodes added/removed, data changed. Is reset
when saved or new tree loaded.

last component (int) - integer holding the number of the last component is
allocated. This is used to automatically identify components. Value initialise to
zero when program is run. When a file is loaded, value becomes one more than
the largest component id value.

faulttree-filename (char[) - character string holding the name of the current tree
in memory. If the tree is created from scratch, the string will be empty,
otherwise it holds the name of the last filename used to save or load a tree.

display-tree (node-type ***) - array of array of pointers. The first array holds
pointers to arrays. Each secondary array stores the graphic positions of nodes
for one sub-tree. Primary array element 0 is always the root node subtree.
Subsequent sub-trees are modules and their subtrees. The secondary array
elements refer to the level (line) on which nodes appear. The elements in these
arrays are the beginnings of linked lists which link the nodes on the same level.
The variable is initially NULL, and is expanded as is necessary.

Figure 8. shows how the nodelist and tree-display structures interact. (for
simplicity modulejist is assumed to be part of node_list). The nodes in the tree
are positioned graphically via the tree-display structure, while the nodes are
stored and referenced by their index through the node-list array. Branches
between the nodes on different levels are indexes to the node-list array, not
pointers.

17



"treefi•4piy

node-list

Root subtree subtesube
1 2 5 st1

level 0-

lev.el

level 2 H __- . ~ ~

( • n , _ . .4 _

level 3 I ' I . '--"r-

-!I - (

Figure 8: Schematic of the interrelationship of the node~jist and treedisplay structures.

tree-display-sizes tint * - this is a dynamic array, which holds the length of each
of the secondary arrays.

tree.Aisplay-segments (int) - specifies how many sub-trees are stored in the
primary array.

tree-display-array-size tint) - specifies the size of the primary array (total size)

current_node (int) - variable holds the node of the tree where the cursor is

currently positioned. Used by interactiveo to tell other functions where the
cursor is, mainly for redisplaying the node cursor.

currenLdisplay.segment (int) - variable indicating which subtree is the currently
active one. This number refers to the entry in the treedisplay primary array.

window.dx, window-dy tint) - integer parameters specifying the size of the tree
display window. This is used to place a border around the current node, and
can be modified by zoomo, to change the dimensions of the window and hence
zoom in and out.

screen-x, screen-y tint) - Tektronix parameters specifying the x,y dimensions of
the screen in normalised screen space coordinates. These parameters are
necessary because of the difference in screen dimensions between the 4235 and
the 4224. The parameters are used to set up the screen window and viewport.

normal_text_x,normal texty,small-text x,small-text-y(float) - physical size of
the dialog area character font x,y dimensions for normal 80x34 and small 128x48
size text. Again, these parameters are necessary because of the differences
between the 4235 and 4224. Used by scrollable listo, edit-nodeo, edit-data0
and editsubpma0 to position the dialog area text on the screen.

18

° •I I llml ml lll l n w m m u •d mm m m i il.l• ma



y-scale (float) - scaling factor taking into account the different screen sizes
between the 4235 and 4224. It is used in the positioning of the dialog areas (STI
command set.dialog-area.positiono).

4. File Formats

The data produced by the program is saved in two files - the fault tree description
file, and the component description file. Two files are used to simplify the GVAM
threat programs, which only require the use of the component information file,
and not the tree description.

4.1 Component File (.cmp)

The component file holds a list of all the components in the target model, and a
large set of the attributes. Each component takes up one line of data, with blank
lines being ignored. Comment lines begin with an exclamation mark (!).The
parameters on each line are listed below in the order they appear on a line.

Component ID - unique integer identifier, in the range 1-32767. It is used to
uniquely identify each component belonging to the tree. This number is used by
the GVAM threat programs to identify a damaged component, and in the Fault
Tree data file to identify the component as a node in the tree description.

Block ID - integer which is used to identify which compartment or block that the
component is in. It must be a valid existing compartment, an integer in the
range 1-32767. The value is not checked by the fault tree program.

Length - real number which is used to specify the length of the component in
centimeters. The valid range of values are 0.0-1E20.

Width - real number which is used to specify the width of the component in
centimeters. The valid range of values are O.O-1E20.

Height - real number which is used to specify the height of the component in
centimeters. The valid range of values are O.O-1E20.

Diameter - real number which is used to specify the diameter of the component in
centimeters. The valid range of values are O.O-1E20.

Volume - real number which is used to specify the volume of the component in
cubic centimeters. The valid range of values are O.O-1E20. The volume is either
entered directly, calculated from the height, width and length, or calculated
from the length and diameter.

Skin Material - an integer in the range 1-2, which is used to represent the type of
skin material.

1 - Steel skin material,
2 - Aluminium skin material.

Skin Thickness - a real number which is used to specify the equivalent skin
thickness of the material in millimeters. Range of the number is any non-
negative number.

19



Hardness Index - integer in the range 1-4 which is used to indicate the component
hardness.

1 - Electronic components, fragile pieces,
2 - Electric components, instruments,
3 - Machinery, armour,
4 - Human, crew.

Packing Density - a real number in the range 0-100 which is used to specify the
density at which the component is packed.

Effectiveness - real number in the range 0-100, which is used to identify relative
effectiveness rating of redundant components, or the percentage effectiveness of
a sub-PMA node.

Fire Resistance - integer value which is used to identify fire resistance of the
component.

Panel Identifier - integer greater than zero, which is used to identify the wall
which is closest to the component.

Wall Gap - positive real number which is used to specify the distance the
component is away from the specified panel in centimeters.

Shock Resistance - positive real number which is used to specify the shock
resistance of the component in meters per second squared (m/s 2).

Component Description - The description of the component is a text string which
trails all of the other parameters. The description may be any length in the data
files, but is limited to 132 characters by the internal line._editor.

Example

0
& C,

1 17 12.0 0.0 0.0 3.0 84.8 2 3.0 2 50.0 100.0023 0.0 5.0 Main Deck Light Switch
2 17 12.0 0.0.0 3.0 84.8 2 3.02 50.0 100.0026 0.0 5.0 Main Deck Light Switch

4.2 Fault Tree File (.fta)

The fault tree file holds the interconnectivity of the components. The tree is made
of nodes which represent one entity in the fault tree description. A node can be a
PMA, a sub-PMA, a Component, a Redundancy or a Module.

The first data element in the list is an integer which specifies the number of
nodes in the fault tree. This is the number of lines of data that follow.

Each node has its data on one line. All nodes share the same first 3 data types
followed by their own specific data. The first node is always the ROOT node, the
node at the top of the tree, and has a node index of zero.

The data for all nodes and the data for different node types varies.

20



Below is how the data is presented.

(ROOT) Text description

(PMA) Text description

nodetype numbeofchildren [list of childrenI ({SUB-PMA} Effectiveness Text description

{COMPONENT) Component ID Effectiveness

IREDUNDANCY)

(MODULE) Text description

Node Type - an integer in the range 0-5. This integer indicates the type of the

node. The values are decoded as -
0 - ROOT node,
1 - PMA node,
2 - Sub-PMA node,
3 - Module node,
4 - Component node,
5 - Redundancy node.

Number of Children - an integer which is used to specify the number of children
linked to this node.

List of Children - a list of integers which is used to identify the index of each of

the children belonging to the node. If the number of children is zero, no values

are given. The indexes of the children nodes refer to their position in the file,
with the ROOT node being zero.

Effectiveness - a real number which is used to specify the effect of the Sub-PMA

on the overall rating in the PMA. The range of the value is a percentage, 0-100.
Only a Sub-PMA has this value.

Component ID - integer which is used to identify the component in the

component file. The range of the number is greater than 1. Only a component
node has this value.

Text Description - This is a text description used to describe the ROOT, PMA,

Sub-PMA, and Module nodes. The description is at the end of the line and can

be any length, but will be truncated to 132 characters if edited by the line editor.

The following example shows as sample tree data file (Figure 10), and how it is
represented graphically (Figure 9.)

21



0

4 ' 5
Node Moduee

Figure 9: Graphical representation of a sample fault tree.

7
0 0 1 1 Root Node
I 1 1 2 PMA
2 2 1 3 0.00 Sub-PMA
3 5 2 4 5
4 4 0 2 0.00
5 3 1 6 Module
6 4 0 3 0.00

Figure 10: Data file details for fault tree shown in Figure 9.

Each node in Figure 9 is numbered to correspond to the number subscripted in
Figure 10. Indices to nodes are referred to by the line number they are on, with
numbering starting at 0 on the first node data line. For example, the ROOT node,
numbered 0, is defined as a type 0 node (ROOT), with one child (node 1) and is
described as "Root Node". Node 3, is a type 5 node (REDUNDANCY), with 2
children (nodes 4 and 5).

The data is in a form that is easily read into the GRAFTED program, but is
cryptic enough to make it confusing to modify manually. The user should be
discouraged from modifying the data by any other means than the GRAFTED
program.

22



4 5. Future Changes

An inconsistency in the use of the effectiveness descriptor needs to be addressed.
Currently, redundant modules cannot be given effectiveness ratings. To
overcome this, a dummy node must be inserted between the redundancy and
each module.

Requests have been made for modifications to the user interface. These include

- Addition of a GOTO COMPONENT NUMBER menu option to allow the
user to jump to a specific component.
A GOTO PARENT function where the user will be prompted with a list

of parents of the current node. This is particularly necessary for finding
the parents of a Module.

- Modify the scrollable list so the user may type more than just the first

letter of the list entry.

Another change requested for the next major revision is a multi-user version of
GRAFTED. With the large volume of data being entered into the Fault Tree, a
multi-user version would allow more than one person to enter data and complete
the task faster. This would require file locking and sharing facilities to be
incorporated to prevent data errors.

Speed and performance is another element that must be considered in future
versions. The slow speed of the terminals limit the amount of data that can be
displayed on the screen and updated continuously. One option is to only display
information on the screen when the user requests it. For example, the screen
might only display the tree and menus, and when the user selects a node, the
node's attributes can be displayed to allow it to be edited.

The platform the software is running on also needs to be considered. With the
demise of the Tektronix company's workstation arm, an alternative platform may
be required. To make it easy to port the software to a new platform, a standard
graphics library should be used. The X Windows graphical interface standard is
the most favoured option since the current workstation supports this standard.
Porting the software would then be less of a problem.

6. Acknowledgements

The authors wish to thank Mr Michael Buckland and Mr Mark Webster for their
help in the testing and debugging of GRAFTED during development.

23



7. References

1. Gass, N., Philipp, W.R., O'Connor, P. and Gauthier, R. (1988). A computer
simulation modelfor the assessment of combat damage due to shock waves from HE
and FAE sources (DREV R-4437/88).

2. Tektronix, PLOT 10, Standard Tektronix interface, escapes, Part
No. 070-7729-00, May 1989.

3. Tektronix, 2-D/3-D Graphics with STI, programmer volume 1, Part
No. 070-6644-03, November 1987.

4. Tektronix, 2-D/3-D Graphics with STI, programmer, volume 2, Part
No. 070-6644-03, November 1987.

5. GRAFTED User manual (Report in preparation).

24



Appendix A - Functions

This section contains a description of all of the functions that are implemented for
the GRAFTED program. Each function heading has the form

functiontype functionname(arguments,..) [sourcecode-module]

where function-type identifies the data type returned by the f'jnction,
function_name is the name of the function, arguments lists the parameters passed
to the function, and source.codemodule specifies the C source code file the
function is defined in.

Unless specified, the function return types are the C default type (int).

main(argc,argv) [fta.c]

Parameters
argc (int) - number of arguments passed to the program including the program
path.
argv (char **) - array of strings containing the arguments passed to the program.

The function main() contains the start of the Fault tree program. It first calls
setup-displayO, which will set the graphics system, and draw the main menus on
the screen. It then calls set-.upsystemo, which initialises the tree in memory and
the graphic display tree. Then, if there are any arguments passed to the program,
the first one is taken as the filename, and is loaded if possible.

It calls find-filesO first to get the pointers to the files if they exist, and if
successful, reads the file by calling load-tree-dataO. If this fails, the partial tree is
deleted from memory and the system is reset. Next is the main section of the
program, where main() calls interactiveO - the interactive part of the program.
interactive() returns values, either telling main() to stop, or to call interactive()
again, with a new jump location. Once finished, main() calls reset displayO to set
the terminal back to text mode.

interactive(node.index) [menus.cl

Parameters
nodeindex (int) - index of node which is to be the current node.

Returns
integer code to communicate with the user.

The function interactiveO is the main looping function. It will read the GIN
device, and then decode the input, calling routines to execute the commands.

On entry to interactiveO, the node is set up as the currentnode, and is drawn
on the graphics screen.

The main loop then begins with a call to get-gin-pick.report(), which waits for
user's input. The input is then decoded and commands are executed. The

25



decoding is divided into two parts - any mouse button pressed (a selection), or a
keyboard key pressed. If a key is pressed, the action is decoded and conmmand
eyecuted. A mouse button press is treated as a selection, and what the user
selected is acted upon. This uses the Tektronix terminals segment pick ability.

The return value of the function can be FINISHED, JUMP or LOAD. If it is
FINISHED, the calling function, mainO, terminates. JUMP causes mainO to recall
interactiveO with the global variable jump-location. LOAD causes main() recall
interactiveO with the root node as parameter. This method of movement is
retained from the original text version which used recursion to ascend and
descend the tree.

display.node(node) fmenus.c)

Parameters
node (node-type *) - pointer to the node which is to be described.

The function display.nodeO will display the text information of a node in the text
display area of the screen. The text description of the node is retrieved first. This
will be the "description" field of the node data type for most types of nodes,
except for REDUNDANCY nodes which just use the text "Redundancy", and
MODULE-REFERENCE which uses the description from the node it is
referencing. Next, the remaining data is displayed with calls to output-nodeO,
passing entries from the datamenu array, specifying data position and length, or
display-text, for empty entries.

output node(node,item) [menus.c)

Parameters
node (node-type *) - node which is to be displayed.
item (int) - which data item of the node (0-16) is to be displayed.

The function output-nodeO will display the data item specified by the parameters
in the text area. This routine is called for displaying all parameters of a
component node, or only selected items for other nodes. Depending on the type
of the data item being displayed, the function will call display-textO,
display-integerO, or display-floatO. Positioning information for the data is kept
in the data-menu array.

select.child(nodechild) [menus.cl

Parameters
node (node-type *) - node of whose child is to be selected.
child (int *) - index of child of node which has been selected.

Returns
child of the node that the user has selected through parameter child. Returns

TRUE if a child was selected, FALSE otherwise.

26



select-branch(branch) [menus.c)

Parameters
branch (int *) - index of selected node to add a branch to.

Returns
index of a node selected by the user to have a branch added to from the current

node to it. Returns TRUE if a node was selected, FALSE otherwise.

select_module(module) [menus.cl

Parameters
module (int *) - index of module which has been selected by the user.

Returns
through parameter module, the selected module. Returns TRUE if a module

was selected, FALSE otherwise.

select.node(node) [menus.cl

Parameters

node (int *) - index of node which was selected by the user.
Returns

selected node index through parameter node. Returns TRUE if a node was
selected, FALSE otherwise.

The "select" series of functions give the user a list of nodes from which they can
select a node.

Except for select childO, the other modules will first scan the nodelist array,
counting the number of nodes that match the criteria. Next, they all allocate two
arrays, "names", an array of character pointers to hold the character description,
and an integer array, "ids", to the hold the indices of the nodes. The integer array
is needed to find the nodes index after the arrays are sorted. The two arrays are
then sorted in alphabetical order with a call to shellsortO. Next, the character
array is passed to scrollable_listo, which interactively allows the user to select a
node. If the user makes a valid selection, the selection is decode via the integer
array and returned with a TRUE flag. Otherwise, if the user aborts from the
scrollable list, FALSE is returned.

set..zoom(state,node) [menuss.cJ

Parameters
state (boolean) - if zoom is on or off (TRUE or FALSE).
node (node-type *) - current node

27



The set-zoomO function adjusts the screen to the current zoom state. If zoom is
off, the window is set to the normal size, and the check box is cleared. If zoom is
on, the window is made 3 times larger, and the check box is made visible.

When the window has been resized, scroll-graphics-screenO is called to resize
the window, and reposition the tree, if necessary.

boolean childof(nodeindex) (menus.c]

Parameters
node (node_type *) - node at which the search is to begin.
index (int) - node we are looking for.

Returns - TRUE if the node (index) is a child of the other node (node), else
FALSE if it isn't.

This function will recursively descend the fault tree, starting at "node", searching
for the second node "index". If the node is found, the function returns TRUE
otherwise FALSE. This function is called when adding a link (branch) to another
node to make sure a loop is not formed in the fault tree.

set.segment(node-index) ]menus.cl

Parameters
nodeindex (int) - index to the node which belongs in the segment to be set as

the current segment.

This function will take a node, find which fault tree segment (section/sub-tree)
and set that segment to the current segment (global variable -
currenLdisplay-segment).

setdialogarea(area) ]menus.c]

Parameters
area (int) - dialog area (1-64) which is to become active.

This function will make a dialog area active, and save the number of the active
dialog area in the global variable current-dialog.

clear-dialogO [menus.c]

This function will clear the current dialog area by sending the ANSI escape
sequence erase-in-page.

28

w w w -



save.firstO [menus.cJ

Returns TRUE if the user enters 'N' or 'n'
FALSE otherwise.

This function prompts the user with the message "File has been modified! Save
First (Y/N) ?". If the user enters 'n' or 'N' the function will return TRUE
otherwise, it will return FALSE. The function is called before loading a new file or
quitting, to help prevent the user from losing changes.

movecursor(new_node) [menus.cl

Parameters
new-node (nodetype *) - node which is to become the new current node (new

cursor position).

This function moves the cursor on the graphics display of the tree. It first resets
the old cursor position of the current node, stored in the global variable
currentnode, then sets the new cursor position, and stores this node in
current.position. Next the new position of the cursor is checked, and if it falls off
the screen, the screen is scrolled with a call to scrollgraphics-screenO.

hidejext.areaO [menus.cl

Makes the text area, where the descriptions of the nodes are, invisible by making
the text area active, then setting its attribute to invisible.

show-text.areaO [menus.cl

Makes the text area, where the descriptions of the nodes are, visible by making the
text area active, then setting its attribute to visible.

addchild(nodeindex,newtype) [add.c]

Parameters
node-index (int) - index of parent under which the new node is to be created.
new-type (int) - type of node that is to be created, if there is a choice.

Returns
TRUE if successful
FALSE if not.

This function will create a new node. First the type is checked to see if the node
can be created. A new node cannot be added to a Module Reference, and a new
Redundancy cannot be added to a Root or PMA node. The node is then
physically created, by calling new-nodeO. The child pointers of the parent are

29



then updated, followed by the parent pointers of the parent. This is done with
calls to new-childO and new.parentO respectively. Next the type of the node is
allocated. If the parent node (node-index) is a ROOT, the new node is a PMA. If
the parent is a PMA, the new node is a Sub-PMA. Otherwise the type of the new
node if "newtype", which is either a COMPONENT, or REDUNDANCY. If it is a
component, the data structure is added, the component is allocated an id, and the
global variable last.component is incremented. Once the new node is created, it is
inserted into the display tree with a call to create-display-tree0. Next the actual
graphics of the node are created, with a call to make-graphicsO, and the global
variable modified is set to TRUE, indicating that the tree has changed. The
function returns TRUE if successful, and FALSE if it fails. It will only fail if the
new node is in the incorrect position or of the incorrect type. The function can
also fail, if the calls to mallocO in new-nodeO fail, but this is highly unlikely on a
UNIX system with virtual memory.

addbranch(node_index) [add.cl

Parameters
node index (int) - node to which a branch is to added.

Returns
TRUE if successful,
FALSE otherwise.

This function will add a branch to an existing node. First, the function checks for
validity. A branch cannot be added to the ROOT, a PMA or a module reference.
The user is then prompted to select a valid node to add the branch to by calling
selectbranchO. The new node is checked, first to see if it is already one of the
nodes children, then to see if the new node is in fact the parent of the node and
hence causing a loop. If all is fine, the parent and child pointers of the nodes are
update. If the node linked to is a module, a module reference is created, and
added to the display tree.

add..moduleO (add.cl

Parameters
index (int *) - index in node-list of the newly created module returned to caller.

Returns
index of new module in node_list, via "index"
TRUE if successful,
FALSE if not.

This function will create a new module. It calls new-nodeO to create a blank
node. It then creates a sub-tree segment for the node by calling
createnewdisplay-entryO. The parameters of the modules are then set, and the
module is added to the display tree, and the graphics are created.

30

w -q - -P - - -



delete(node-index) [delete.c)

Parameters
node.index (int) - index of the node about to be deleted.

This function will delete a node. The node will not be deleted if it is the ROOT
node, or if it has children. If the node has no parents, and is not a module, it will
be deleted immediately (a free node). If it has parents, the references of the
parents to the child are deleted with calls to remove_childo, which will delete the
node when the last parent is deleted.

If the node is a module, the module must be removed, as well as the display
information.

delete..child(nodeindex) [delete.c]

Parameters
node jndex (int) - index of node which has children to delete.

This function will prompt the user to select a child of a node to delete. The
function will call select-childO to prompt the user with a list of children. If the
child doesn't have children, removechildO will be called to remove the node.

remove._child(node index,child) [delete.cl

Parameters
node&index (int) - index of the parent node
child (int) - index to the parent node child array, pointing to the child to be

deleted.

This function will remove a specific child from a parent.
If the child has more than one parent, only the link is removed. The link is

found in the child's parent array and the space is closed up. If the child was a
module, the module reference is removed from the graphical tree structure and
the modulejlist array.

If the child has only one parent, the node is removed from the display list, the
node is deleted, and it is removed from the nodejlist array.

Finally, the space in the parents child array is closed up.
Note - it is assumed that the caller has already detected that the child has no

children.

remove.from-display-list(tree.segment,node_index) [delete.cl

Parameters
treesegment (int) - The tree segment that the node belongs.
node-index (int) - The index of the node to be removed.

31



This function will remove a node from the tree display list. The function first calls
node-in display.tree0 to get a pointer to the node in the tree, "node". The

pointers of the next and previous nodes are then fixed up to by-pass the node.

save.treeO [diskio.cJ

This function will write out the tree data as two output files. It starts by calling

compress-tree0 to compress the data in the nodejist array (i.e. remove NULLs to

make storage contiguous). Then the function get..output.filenamesO is called to
prompt the user for the output file name. This function returns the pointers to the

two files. Then the data is written in the format specified in the data format
section. Attributes belonging to the tree structure are written out in the main loop

of the function, while the data belonging to components, and the description of

the node, is written out with a call to outputdatao.

output_ data(tree-file,componentjfile,type,node,data,description) [diskio.c)

Parameters
tree-file (FILE *) - file variable for tree description file.
component-file (FILE *)- file variable for component description file.
type (type.of node) - type of node.
node (node_type *) - node whose data is being output.
data (data-type *) - data record of component that is being output.
description (char *) - character string description of node.

This file will output data to the respective files. If the node type is a component,
all of the component data is output to the component file, as well as the
description, with id also going to the tree description file. The SUB PMA will
output its effectiveness to the tree file, and the rest of the nodes output their
description to the tree file.

compress-treeO (diskio.c)

Returns
TRUE if successful,
FALSE if fails (memory error)

This function will move all of the nodes in the node-list array, into contiguous
space, removing blank nodes. It starts by allocating an array of integers,
"pointers", which represent the indices of the node-list array. Then the array is
filled with integers representing where the nodelist indices will be after shifting.
At this point we can stop if there is no need to compress. Next we remove all of
the holes in the node-list array. Then we scan through the list to find all integer
references to elements in the node_list array, and update the new position via the
"pointers" array. These references are found in the children and parents arrays of
the respective nodes.

32



get..output.filenames(tree-ptr,componentptr) [diskio.cJ

Parameters
tree.ptr (FILE *) - returned file pointer to the tree file.
component.ptr (FILE *) - returned pointer to the component file.

Returns
TRUE if filename found,
FALSE if user aborts attempt to find name.

This file prompts the user for the output filename and returns the pointers to the
files, or returns FALSE if user aborts the attempt. The prompting sequence for the
filename is shown below.

initialise prompt string to last filename used
loop until filename has been found

call line editorO to allow user to enter/change filename
remove leading blanks
if the length of the name is zero, user wishes to abort
remove filename extension
create text filenames
if either of the files exist

prompt the user to overwrite the files
if they don't want to overwrite the files

jump to the start of the loop
end of loop
use the renameO function to move old files to "files".old
open output files

The global variable faulttree_filename, contains the last valid filename used by
the user. This is present when the user is prompted for the name so it can be
accepted as default. It is also update when a new name is given.

loadjtree.data(FILE *tree..ptrFILE *component..ptr) [diskio.c]

Parameters
treeptr (FILE *) - file pointer to tree description file.
component-ptr (FILE *) - file pointer to component file.

Returns
TRUE if successful,
FALSE if user aborts, file error, or memory error.

This function will read in the tree data. It assumes that the input files have
already been opened, and then starts by deleting the existing tree with a call to
killjtreeo. Note - it is assumed that the user has already been prompted to
overwrite the existing tree before entering the function.

Next the main loop begins, reading in all of the data in the treejfile data file.
Memory is allocated for the nodes as the tree is read in. Calls are made to

33



input..dataO to read in data specific to the node type. Once the file has been read,
it is closed, and the function read.componentsO is called to read the component
data file. Once this is read, a call is made to setup-tree.parametersO to set up the
parameters of the fault tree, and the graphic fault tree.

input-data(tree.ptrtypenodedatadescription) [diskio.cJ

Parameters
tree_.ptr (FILE *) - File variable for tree file.
type (type.of-node) - type of node being read.
node (nodetype *) - current node being read.
data (data-type **) - pointer to data section of node, for components
description (char **) - node description, to be returned.

This function will read in node data from the tree file. If the node is a component,
the data section of the structure is allocated, and the componentid is read in. For
a sub-PMA, the effectiveness and the character description is read. For all other
nodes, only the description is read.

When the description is read, leading spaces are first removed, followed by the
trailing newline character, and trailing spaces. If the string length isn't zero, the
function replacestringO is called to place the string in "description". If not NULL
is entered.

getinput.filenames(tree-ptr,component_.ptr) [disk io.cl

Parameters
tree.ptr (FILE *) - file variable to be returned for tree file.
component.ptr (FILE **) - file variable for component file.

Returns
TRUE if an input file is successfully found,
FALSE if the user aborts the input.

This function will prompt the user for the tree input filename and returns the
pointers to the files, or returns FALSE if user aborts the attempt. The prompting
sequence for the filename is shown below.

loop until filename has been found
call line.editor() to allow user to enter/change filename
if the length of the name is zero, user wishes to abort
remove filename extension
remove trailing blanks
create text filenames
if either of thefiles do not exist

jump to the start of the loop
end of loop
open output files

34



The global variable fault-tree-filename, contains the last valid filename used by
the user. This is updated when a new name is given.

find-files(name,tree-ptr,component-ptr) [diskio.c]

Parameters
treeptr (FILE *) - file variable to be returned for tree file.
component.ptr (FILE *) - file variable for component file.

Returns
TRUE if the files are successfully found,
FALSE if not found.

This function is passed a file name, and it is check to see if it exists. If so, the tree
and component files are opened and returned. Otherwise the function returns
false.

extract_name(name) (diskio.cl

Parameters
name (char *) - filename to be modified.

This function will take an input string, remove leading spaces, remove an
extension (anything following the first '.' and then remove trailing spaces.

exists(name) tdiskio.c]

Parameters
name (char *) - name of file to check.

Returns
TRUE if file exists
FALSE if it doesn't

This function will check to see if the named file exists. If it can open the file it will
return TRUE, if not, it assumes it is not there, and returns false.

kill.treeO [diskio.cJ

This function will remove the fault tree from memory. It will remove all entries
from the node-list and module-list arrays, and then the arrays themselves. Then
it will free the arrays used to store the tree display. It will also reset the
parameters of all the arrays to zero size arrays.

35



reak-components(fptr) [diskio.cJ

Parameters
fptr (FILE *) - file variable for the component file.

This function will read in the component data file. It will continue the loop below
until the end of file is read.

loop
read all of the component parameters
read the description
#f either were unsuccessful

quit the loop
ifa node matching the component id is not found in node.list

allocate space for it.
assign the parameters to the data structure
tidy up the description string (remove leading/trailing)

(blanks/newline)
go to start of loop

deletegraphic-node(index) [display.c]

Parameters
index (int) - index of node whose graphic segment is to be deleted.

This function calls the STI command delete.segment0 to delete graphic node of a
node. It is called to delete a graphic segment just before it is redefined.

delete-graphic-treeO [display.c)

This function will erase all of the segments defined to draw the tree, starting at
500 to the last one defined. It will also set the segment counting parameters, and
renew the display by calling renew-displayO.

hide-treeO [display.cJ

This function will make the current display tree segment invisible. It will first
delete the links of the tree, and then make the nodes in the tree invisible. It calls
hide..node0 to make the node invisible.

display-tree(tree-segment, nodejindex,centre-node) [display.c]

Parameters
treesegment (int) - the sub tree which is about to be displayed.
node-index (int) - index of the node at the top of the subtree.

36



centre-node (int) - current cursor position, the node which must be on the
screen.

This function will display the graphic tree on the screen. It first calls tree-fixupO
to set the position of all nodes on the tree, Then it calls setup..graphicsO to get
the terminal ready to receive commands to draw the tree.

Next, the function will trace through the tree, and draw all of the links to the
nodes. All of the links are drawn as one graphics segment, invisible at first, and
then set visible when they have all been drawn.

Then the function draws all of the nodes. This is a simple case of finding all of
the nodes in the display tree and calling display-nodeO to position the node and
make it visible.

Finally, the screen is scrolled to set the position of the tree with a call to
scroll-graphics-screenO.

draw.node(height,node) [display.cl

Parameters
height (int) - the height of the node, ie which line it is on.
node (nodetype *) - the node being displayed.

This function will draw a node at a specific position. The x position is stored with
the node, and the y position is calculated from the height parameter, which
specifies which line the node is on. The node already exists as a segment in the
terminal memory, so it is just a case of moving it to the new position, and setting
it to visible.

hide-node(node) [display.cJ

Parameters
node (node-type *) - node to be set to invisible.

This function will make a node to invisible, by calling the Tektronix command to
set a segment invisible.

drawjlink(heightl,ptrl,height2,ptr2) [display.cl

Parameters
heighti (int) - line on which first node is drawn.
ptrI (node.type *) - first node.
height2 (int) - line on which second node is drawn.
ptr2 (node-type *) - second node.

This function will draw the node link between two nodes. It will start by
calculating the y coordinates of the start and end of the line, keeping in mind the

37



line starts at the bottom of the first node, and ends at the top of the second node.
The x coordinates are calculated from the node data. Then the line is drawn.

Next, the normalised vector representation of the node is calculated, so that it
can be used to draw the arrow head. The lines are drawn at 20 degrees to the
centre line, using the rotation equations

x = x' cos t - y' sin t
y = x'sin t + x' cos t

scroU..graphics..screen(x,y) [display.cJ

Parameters
x (int) - x position of node
y (int) - y position of node

This function will move the display window over the point specified, putting it in
the centre of the window, or positioning the window against the tree min/max
value.

The function starts by comparing the right edge of the "to be" window with the
right edge of the maximum tree area. If it is greater, the window is set to be
against this edge, otherwise it is set right in the middle. Next, the window is
checked against the left edge to see if the window has overflown to negative. If
so, it is moved against the left edge. This positions the window if the centering
overflows, or if the tree is small, it moves it from the right edge to the left edge.

This same procedure is repeated for the y coordinate, first comparing the
bottom of the window then the top.

Next, calls are made to set..window0 to set the new window position, then
renewview0 to update the display on the screen.

renewTdisplayO [display.cl

This function will redraw the entire graphics display. It first fixes up the menu, in
view 1, by calling setsegmenLindex0 to set it to its original color. Then it calls
renew.view(2) to update the graphic display of the fault tree.

highlightjnode(node) [display.c]

Parameters
node (node-type *) - node which is to be highlighted.

This function is used to highlight the cursor, by calling set-segmenLindex0 to
change its color.

38



treejfixup(tree.segment,node-index) [display.ec

Parameters
treesegment (int) - segment of the tree to fix up.
nodeindex (int) - index of node to fix up below.

This function is a front for the fixup-treeO recursive function. It starts by
accessing all elements of the sub-tree, and setting their "used" flags to FALSE.
Then it calls fixup_.treeO.

ftxup-tree(tree.segment,node-index,height,centre,xmin,xmax) (display.cJ

Parameters
treesegment (int) - segment of sub-tree being fixed up.
nodeindex (int) - index of current node in the tree.
height (int) - height down into the tree of this node.
centre (int) - x coordinate of where we would like the centre of the node to be.
xmin (int *) - I returns the value of where the node ended up being
xmax (int *) -

This recursive function will fixup a fault tree segment. It will descend the tree
and position all of the nodes in a structured tree format, evenly spacing the child
nodes under the parents.

The functionality of the routine is described below

fixup.treeO
find the largest x value of the node to the left on this line.
calculate where we would like this node to be, relative to the left neighbour.
calculate the width of all the children of this node so we can position the children
underneath.
for all the children of the node -

calculate where we would like the child to be.
callfixup.treeO to position the child.
save the xmin, xmax values of that child, calculating the width of all
children.

the position of the node is the above the middle of the children.
return the xmin/xmax values of this node to its parent.

end.

ediLdata(node) [edit.c]

Parameters
node (node-type *) - node to be edited.

This function allows the user to edit the data associated with the node. If the
node is a COMPONENT, editLnode0 is called. If it is a SUBPMA,
edit-subpma0 is called. Otherwise the user can edit the description of the string.

39



Here, the function calls line-editor() to change the description string, and if the

user modifie: it, the old string is replaced, the text area is updated, and the
graphic node is replaced with the new string.

ediLnode(node) [edit.c]

Parameters
node (node-type *) - node being edited.

This function allows a user to edit a component. The routine is a large loop which
continues moving through the data items allowing the user to edit them until he
decides to stop. The description below shows the routine.

set pointer to first data item
start loop

decode data item
find its type and data

calculate position of editor
place data into the edit string
call the editor
if the string was changed

extract data from string
change the data item
redisplay the text

look at the key pressed to leave the editor
Up/Down arrow - move to next data item
Enter/Esc - move down to next item. If last, stop.
Mouse button - stop

go to start of loop
if text description was changed, create new graphic node

float cylinder(length,diarmeter) [edit.c]

Parameters
length (float) - length of cylinder.
diameter (float) - diameter of cylinder.

Returns
Volume of cylinder (float).

This function calculates the volume of a cylinder.

editsubpma(node) [edit.cl

Parameters
node (nodetype *) - node to be edited.

40



This function is the same as edit_nodeO, except that it only edits 2 data items.

setup-graphicsO [ftagraph.cJ

This function will set up graphics parameters and makes the menu visible by
setting its visibility parameter.

display-text(textx,y,size) [text.cl

Parameters
text (char *) - text string to be displayed.
x,y (int) - xy position to place string.
size (int) - width of field to place string.

This function will use ANSI escapes to display a text string at a given position.

First, ANSI sequences are called to place the cursor at the xy coordinate. Then the
length of the string is determined. Only a set number of characters is then

displayed, with any space padded with blanks.

display.integer(numberx,y,size) (text.cl

Parameters
number (int) - number to be displayed
x,y (int) - position to place number
size (int) - width of field to display number.

This function will display an integer on the screen at a given position of a specific
length. The function uses sprintf0 to print the integer into a string, and then calls
displayjtext0 to output it.

display-float(numnber,x,y,size) [text.c)

Parameters
number (float) - number to be displayed
x,y (int) - position to place number
size (int) - width of field to display number.

This function will display an integer on the screen at a given position of a specific
length. The function uses sprintf0 to print the float into a string, and then calls
display-textO to output it.

41



shellsort(chararray,intarray,nmmber-elements) [shelsort.c)

Parameters
char-array (char *) - array of char *, to be sorted
int-array (char *) - array of integer, elements swapped as with char-array
number-elements (int) - the number of elements in both arrays.

This function implements a shell sort. It was implemented specifically for this
case, sorting both the character array and integer array together, which could not
be handled by the C library function qsortO. The array char..array contains text
strings which are sorted in alphabetically. int-array, holds data belonging to
char.array, so as elements in char..array are moved, the corresponding elements
in int-array are also moved.

stricmp(sl,s2) [shelsort.c]

Parameters
sl (char*) - string I
s2 (char*) - string 2

Returns
1 if sl>s2
0 if sl=s2
-1 if sl<s2

This function implements the ANSI C library function stricmpo, which was not
available in the C implementation GRAFTED was written for. The function will
perform a case insensitive comparison of two strings. It first finds the length of
the shortest string, and starts comparing individual characters in the strings. If
either character doesn't match, the function returns 1 or -1. If the entire string is
matched, it returns 0.

new-node(index, title) [node.c)

Parameters
index (int *) - returns the index in node_list of the newly created node.
title (char*) - text description for the new node.

Returns
TRUE if successful,
FALSE if not (memory error)

This function will create a new node entry in the nodelist array, and return the
index via the parameter "index". The function first allocates memory for the node
with a call to malloc0 and then attempts to create space for the title string if there
is one. It will then initialise some of the parameters of the node, generally setting
everything to 0. It will then insert the new node into the node-list array, with a
call to insert-ptr~arrayo.

42

w - -



free-node(node) [node.c]

Parameters
node (node-type *) - node to be freed.

This function will use the C function free0 to deallocate the memory belonging to
a node.

node-type *geLnode(node-index) [transpar.c)

Parameters
node index (int) - index of the node to be returned.

Returns
pointer to the node.

This function is used to convert the node_index into a node pointer. If the index
is negative, it refers to a module reference, which is transformed into a pointer to
the actual node.

node-ptr *get-ptr(node-index) [transpar.cJ

Parameters
node_index (int) - index of the node to be returned.

Returns
pointer to the node.

This function will return the pointer to a node's data structure, not main data
section. The difference between this function and get-node0 above, is that
get_node0 will return the node-list entry for a module, while get-ptr0 will
retrieve the module_list entry.

type-of node type-oftnode) [transpar.cl

Parameters
node (node-type *) - node whose type is to be returned.

Returns
node->type parameter in the structure.

set.type-oflnode,type) [transpar.c)

Parameters
node (nodetype *) - pointer to the node
type (type of node) - new node type

Sets the type of node (node->type).

43

II w



int index..oflnode) ttranspar.c]

Parameters
node (node_type ) - pointer to the node

Returns
the index (int) of the node in node_list (node->index)

seLindex-oflnode,index) [transpar.c]

Parameters
node (node-type *) - pointer to the node
index (int) - new index for the node

This function assigns the index to the node.

new-child(node,new-child,index) [transpar.c]

Parameters
node (node_type ) - pointer to the node with the new child
newchild (int) - index of the new child
index (int *) - index in the node->child array of the newly entered array.

This function will enter a new child index into the child array of a node. It does
this by calling the function insert_intarrayO.

new_-parent(node,newjparent,index) Itranspar.c]

Parameters
node (node..type *) - pointer to the node with the new parent
new.parent (int) - index of the new parent
index (int *) - index in the node->parent array of the newly entered array.

This function will enter a new parent index into the parent array of a node. It
does this by calling the function insert.int-arrayO.

int segment of(node) [transpar.c]

Parameters
node (node-type *) - pointer to the node

Returns
if successful, it will return the display tree segment the node belongs to (int),
if unsuccessful, -1

44

i ........ .... . ........ ... ....... . ....... -



This function returns the display segment the passed node belongs to. It starts
with the node, and traces back up the tree, until it finds a node with no parents.
This should be the top. Then the modulejid of this node is returned. (The
modulejd of a ROOT or MODULE node, holds the display tree segment it is in).

set-tree-parametersO [initptr.cJ

This function is called by load-treeo to initialise all of the parameters of a new
tree. It starts by calling set.parents( for each ROOT or MODULE node, which
will descend the tree recursively, setting the parent pointers. It will then search
the node-list array and find all of the MODULEs, and create a module reference
for display purposes by calling moduliseO. It will then place the ROOT node in
the display tree, followed by all of the the modules by first calling
createnewdisplay-entryO and then create-display-treeO. It will then scan
through both node-list and modulelist, creating the graphic representation of
each node with a call to make.graphicsO.

set-parents(parent,child) Hinitptr.cJ

Parameters
parent (int) - parent of the child node
child (int) - node from which we will descend

This function will recursively descend the tree and set a node's pointers to its
parents. It will first of all add the parent pointer "parent" to the list of parents
belonging to the node "child". It will then recursively call itself for each child
belonging to the "child" node, with "child" being the parent parameter.

modulise(nodechild) [initptr.cl

Parameters
node (int) - index of the node who has a module as a child.
child (int) - child array index of the module belonging to the node.

This function will take a node and its child, which has been determined to be a
module, and add a module reference. It will first create a new node record, and
initialise it as a MODULEREFERENCE. It will then add it to the module-list
array with a call to the function insert-ptr arrayO. It will then change the child
pointer in the node and create a parent pointer for the module reference.

create.display.tree(tree.segment,node-index) [grphtree.cl

Parameters
treesegment (int) - segment of the tree to be set.
node_index (int) - index of node at the top of the tree.

45



This function will create the structure for a tree segment, entering data into the
display-tree arrays. It starts by clearing the sub-tree array, by entering NULL's
into the array. It will then call add-graphic-nodeO, to insert the passed node into
the top of the tree. add.-graphic.node0 is a recursive routine which will add in
the rest of the sub-tree.

add4 raphic_node(treesegment,node-index,height) [grphtree.c1

Parameters
tree-segment (int) - segment of the tree to add the node to
node_index (int) - index of the node to add
height (int) - line on which to add the node.

This function adds a node to a particular line on the display tree. If the node is a
module reference, it is added immediately. Otherwise, the tree is first check to
see if the node is already in there, if not, it is added by calling
add-graphic.nodejtolistO, and its children are then added recursively.

add.raphic._nodejto-list(treesegment,node-index,linenumber) (grphtree.cl

Parameters
tree-segment (int) - segment of the tree
node-index (int) - index of node to be added
line-number (int) - line on which to append the node

This function will add a node to the end of the linked list of a line of the
display-tree. It will first check that the line exists in the tree-display array, if not,
it is created with a call to grow arrayO. Then the node is appended to the end of
the linked list by following the pointers to the end.

node-in-display-tree(treesegment,node index,returnmptr,returnmheight)
[grphtree.c]

Parameters
tree-segment (int) - segment in which to search
node index (int) - node to search for
return-ptr (node-type **) - returned pointer to the node
returnheight (int *) - returned line on which node was found

Returns
TRUE if node is found
FALSE is otherwise

This function will search a treesegment to find the pointer and height of a node.
If the node is found the function returns TRUE, FALSE otherwise. The function
will search each line of the display tree segment, and search the linked lists until it
is found or the search is exhausted.

46



createdisplaytreeentry(index) !grphtree.cJ

Parameters
index (int *) - returned index to the new tree.display space.

This function will create space in the treefdisplay array for a new display sub-tree
array. It will search the tree-display array to find a blank spot and return its
index. If it can't find a spot, it will call grow_arrayO to increase the size of the
array, and increase the size of the tree_display-array-sizes array. It will then
return the next free position index.

make-graphics(node) [grphtree.cJ

Parameters
node (node tvpe *) - node for which the graphic is to be created.

This function will draw a new graphic for the passed node. The function assigns
the node a graphic segment number from the global variable "segment_number",
calls make.graphic.nodeO to draw the new segment, and then increments
"segment.number".

new.graphic(node) [grphtree.c]

Parameters
node (node-type *) - node whose graphic is to be changed.

This function will take a node and change the graphic associated with it. It will
delete the segment it currently has, and then call make-graphic-nodeO to create a
new one. It will then redisplay the tree by calling display-treeO and
move-cursorO.

make-graphicnode(node,segment) [grphtree.cl

Parameters
node (node-type ') - node for which graphic is to be created.
segment (int) - segment number for the new node.

This function will draw the graphic representation of a node. It starts by
initialising the graphics parameters used to draw the node. This includes setting
the segment pivot point to (1000,1000). This is done so the node will be drawn
and not clipped at any boundary. The pivot point is set to the centre of the node.

The function first checks for a redundancy node, and if it is, it is drawn as an "R"
in a circle. This is drawn separately because it has no varying parts. If the node is
not a redundancy, the text description is then written.

The text description is drawn at the centre of the node, either as one line or two.
If the line is greater than 25 characters, attempts are made to try to split it after the

47

_ l wl l



nearest punctuation mark. The text is then drawn, setting height and width
variables, so a border can be drawn around the text.

Next, the border is drawn around the text. The symbols shown in Figure 11 are
used to distinguish between the nodes.

Component PMA

Root Node Sub-PMA

Module or Module Reference

Figure 11: Schematic of the symbols used to distinguish nodes.

The variables dx, dy and graphicid, belonging to the node are updated.

set-up-systemO [misc.c]

This function initialises the parameters belonging to the fault tree program. It
initialises the node list and module_list arrays and variables, the tree.display
structure, and creates the root node and enters it into the tree-display and
node-list structures.

replace-string(old.string,newu.string) [misc.cl

Parameters
old-string (char *) - pointer to the text string pointer which is to be replaced.
new-string (char') - the text string which will replace the old string.

This function is used to replace an old text string with a new one. The memory
used by the old string is released using the freeO function and then a new
memory block is allocated using the mallocO function. Finally, the new string is
copied across using the strcpyO function.

insertptr_array(array,arraysize,entries,new_ entry,index,increment) [misc.c]

Parameters
array (void "*) - pointer to array variable to array of pointers.
array-size (int *) - pointer to array size variable
entries (int *) - pointer to number of entries in array variable
new-entry (void *) - new pointer to be added to the array
index (int *) - returns the index to the newly inserted pointer.

48



increment (int) - size by which to increase array if full

This function will place a pointer variable into an array. It starts by searching the
array, "array", trying to find a NULL entry. If it doesn't, the function calls
grow-arrayO, which will increase the size of the array, and adjust the array size
parameters. The new entry is then inserted into the array, incrementing the
number of entries in the array, and then returning the index of the new entry in
the array.

insert_intarray(array,array.size,entries,newentry,index,increment) [misc.c]

Parameters
array (int *) - pointer to array variable to array of integers.
array-size (int *) - pointer to array size variable
entries (int *) - pointer to number of entries in array variable
new-entry (int) - new integer to be added to the array
index (int *) - returns the index to the newly inserted integer.
increment (int) - size by which to increase array if full

This function will insert an integer to the end of an integer array. The function
starts by checking the size of the array, and if it is full, the function calls
grow.arrayO to increase the size of the array. Then the new entry is added to the
end of the array, and returns the index to the new item in the array.

grow.array(array,array_ size,entry~size,increment) [misc.cl

Parameters
array (void *) - pointer to generic array variable.
array-size (int *) - pointer to array size variable
entry-size (int) - size of one array entry.
increment (int) - size by which to increase array.

This function will increase the size of a dynamic array. It starts by allocating
memory for a new array with "increment" entries larger than the old one. The
function calloc0 is used to allocate the memory because it also resets the pointers
to NULL. Next the old array data is copied to the new array, just before the old
array memory is released using the free() function. Then the array pointer is
renewed, and the size variables updated.

read.character(result) [inisc.cJ

Parameters
result (char *) - returns the character pressed.

Returns
TRUE if a printable character was pressed (32-126 ASCII)
FALSE if not

49



This function will call getginipick-reportO to get user input, and decode the
report. It looks at the key pressed for the gin pick report, and returns TRUE if a
printable character was pressed, FALSE otherwise.

putsxy(x,y,string) [misc.cl

Parameters
x,y (int) - xy coordinate to place string.
string (char *) - string to be output.

This function will output a string at a particular xy coordinate. It uses an ANSI
escape sequence to set the cursor position, and then it prints the line.

error(string) [misc.cJ

Parameters
string (char *) -message to be displayed.

This function will display a message in the message area on the bottom line of the
screen. The area is first enabled, then a newline is printed to erase any old
messages. Then the text is output and the buffer flushed to display the message
immediately.

boolean geLtyn(string) [misc.cJ

Parameters
string (char *) - message to be displayed.

Returns
TRUE if the user types "y" or "Y"
FALSE otherwise

This function will display a message in the message area, and then wait for user
input. If the user types "y" or "Y", the function returns TRUE, otherwise it returns
FALSE. This is meant to prompt for a (Yes/No), with no being the default.

clear_ message-areaO [misc.cl

This function will write a newline to the message dialog area causing the one line
display to scroll, effectively clearing it.

clear~jextO [misc.cJ

50



This function will call the TEK STI function clear.dialog-scrollO to clear the
current dialog area.

set.filejdialogO tmisc.c]

This function will set the current dialog area to the file dialog area.

arrowO fscreen.cl

This function will draw an arrow segment, and define it as the GIN cursor for the
401 GIN device which will be used in the program.

setup.mouseO [screen.c)

This function will initialise the GIN device used by the fault tree program. It
defines GIN device number 50, using the TEK STI function map-gin-deviceO, to
be the mouse, with trigger keys being the main keyboard keys, the mouse buttons,
and the arrow keys. It also calls the function arrow() to define a new cursor for
the device, and then alters the rate table so the movement is sharper.

disablemouseO fscreen.cJ

Calls tek function disable.ginO to turn off the mouse.

enable-mouseO [screen.c)

Calls tek function enable-gin0 to let the user input via the mouse.

define-macrosO [screen.cl

This function will read the contents of the array macros[], and output its contents
via the tek command define-macroO. This will define the keys used by the
program to single key macros.

reset_scroll-keysO [screen.cl

This function redefines the scroll keys, and all other combinations, including shift,
ctrl, alt, to return a space character " "(0x20). This is an attempt to stop the user
scrolling a text box accidently.

51



setcharacterý..setO [screen.c)

This function will define the two character banks, GO and GI. GO (0-127) is set to
North American ANSI, while GI (128-255) is set to the TEK supplemental
character set. The squared and cubed symbols are used in the menu display from
the TEK character set.

box(xl,yl,x2,y2) [screen.c]

Parameters
xl,yl (int) - first comer of the box.
x2,y2 (int) - second corner of the box.

This function will draw a rectangle on the 3creen at the given coordinates.

setup.displayO [screen.cJ

This function will initialise the display, setting the terminal ready for graphics.
The keyboard is first locked by sending the escape codes <esc>%10<esc>KL1, for
the Tektronix terminal commands CODE ANSI, LOCKKEYBOARD YES. This
will prevent the user from typing and interfering with the graphics output. It is
unlocked after everything is drawn and the GIN device has been setup. Once the
GIN device is initialised, any input is decoded and not echoed. The terminal
modes are set with a call to setsystem-parametersO. Next, the two views are
set, setting the viewports and windows. Finally, generate graphics is called to
draw the menus, set up the segments, and the dialog areas.

generate-graphicsO (screen.c]

This function draws the screen. The menus are drawn by drawing lines around
the menu areas, and calling the series of draw_...,iconO functions to draw the
menu icons. Next a segment is created to hold the zoom box check, and then the
dialog text areas are created.

refresh displayO [screen.c)

This function will erase the main screen segments, and the dialog areas, and then
call generate.graphicsO to redraw the screen. The function is used to refresh the
screen, if for any reason the screen becomes corrupted (by use of the SETUP key).

reseLdisplayO [screen.c]

This function will reset the terminal back to the state it was in before the program
was run. It will disable the mouse, free the viewing keys, erase the graphics

52



screen, clear the dialog areas used by the program, and enable the main dialog
area. It will then stop STI.

setupjsystem-parametersO [screen.cJ

This function will start up STI, and set the terminal ready to be used. STI is
initialised by calling sti-initializeO. The terminal type, returned by
sti-initializeO, is checked to initialise device dependent parameters. These
parameters are dependent on the screen height in pixels (the y coordinate), which
is different on the 4224 terminal and the rest of the 4200 series terminals.
Parameters set up include the x,y screen size, xy character font sizes of the normal
and small fonts, and a y coordinate scaling factor. Next the screen is cleared,
deleting all segments, views, and dialog areas. Then the keyboard is set, locking
the viewing keys, the TEK key and the COMPOSE key. The scroll keys are
disabled, and then the keyboard macros used by the program are defined.
Finally, the mouse is initialised, and then enabled.

setup-text areaO [screen.c)

This function will set up the three text areas, the TEXT area, the MESSAGE area
and the FILE area. Each of the areas are defined as a separate dialog area, with
changes made to the dialog's position, size, and character size. The TEXT area is
also initialised with the data in the data-menu[] array. This contains form
information for displaying node data. It displays the text description as well as a
box to place the data.

create zoom.tick(xJ,yl,x2,y2) [screen.c)

Parameters
xl,yl,x2,y2 (int) - bounding rectangle of the icon position.

This function will create an X in a segment, which can be used to fill the zoom tick
box, to indicate it is on or off. The segment is created and left invisible, and is
given a higher priority than the menu segments so it can be seen above them.

draw.zoombox(xl,yl,x2,y2) [screen.cl
draw.new-dependency-icon(xl,yl,x2,y2) Iscreen.cJ
draw_newredundancyicon(xl,yl,x2,y2) [screen.cl
draw_newmoduleicon(xl,yl,x2,y2) fscreen.c]
draw.._newbranch-icon(xl,yl,x2,y2) [screen.cl
draw-jump-module-icon(xl,yl,x2,y2) [screen.c]
drawjumpnode_icon(xl,yl,x2,y2) ]screen.ci
draw-jump.to.top-icon(xl,yl,x2,y2) [screen.c]
draw-file-icon(xl,yl,x2,y2) [screen.cI
drawdeletejicon(xI,yl,x2,y2) [screen.c]
drawdeletebranch-icon(xl,yl,x2,y2) [screen.c)

53

i mm_ wmm ~ a •m • *



Parameters
xl,yl,x2,y2 (int) - bound rectangle in which the icon is to be drawn.

This collection of functions will draw an icon representing a function. The
function is passed the coordinates of a rectangle, in which the icon will be drawn.
The icon is drawn relative to the comer xl,yl, and is not scaled as the size of the
rectangle changes.

lock-keysO [screen.cJ

This function will call the TEK STI function to lock the keyboard so the user may
not interfere with the display while it is being generated.

unlock.keys() (screen.c]

This function will unlock the keyboard.

scrollable_list(list,entries,xl,yl,x2,y2,selection,chartsize) (list.c)

Parameters
list (char **) - array of strings holding the text to be displayed as a list.
entries (int) - the number of strings in the array.
xl,yl,x2,y2 (int) - graphics coordinates of the bounding box around the menu.
selection (int *) - returns the entry selected by the user.
charsize (int) - size of character to use,O - normal size,

1 - small size.
Returns

TRUE if user has made a valid selection,
FALSE if user aborts the selection.

This function implements a scrollable list. The list is drawn with arrow scroll
boxes at the top and bottom so the user can scroll and select with the mouse. The
keyboard may also be used, with the up/down arrows, and the next/previous
screen keys functional.

The box around the list is drawn in graphics, while the text is done using the
dialog area. Underneath each of the dialog area lines, an invisible filled rectangle
is drawn. These rectangles are selectable, and can be picked by the user with the
mouse. If the keyboard is used, the invisible blocks are changed in color to act as
the cursor.

The user can press an alphanumeric key, and the routine will search the list for
an entry starting with that letter. The search is not case sensitive.

The user can make a selection by pressing the mouse button over the choice, or
hitting ENTER when the cursor is over the desired choice. Pressing the ESC key
will abort without making a choice.

54



The function first checks the character size, and sets the graphics attributes.
This is the character height and width parameters, CHARHEIGHT and
CHAR.WIDTH, used in aligning the text and graphics. Next the graphics are
drawn, and the segments are set with a call to displayilist-boxO. Then the list is
displayed with a call to display-listO.

The interactive part then starts reading a GIN report and decoding it. The
cursor is moved with calls to move-list-cursorO, and the text is scrolled with calls
to display-listO. If an alphanumeric key was pressed, a case insensitive search is
performed on the first character of each list item. If one is found the cursor is
positioned there, otherwise nothing happens. The search starts at the current
cursor position.

movelist_cursor(new,old) [list.c]

Parameters
new (int) - new cursor position.
old (int) - old cursor position.

This function will move the cursor from its current position to a new one. It does
this by changing the color (index) of the segment at the old position to 0 (black)
and th& one at the new position to 14 (grey).

display-list(list,entries,first,lines,characters) (list.cl

Parameters
list (char **) - array of strings to be displayed.
entries (int) - the number of strings in the array.
first (int) - the index of the first string to be displayed.
lines (int) - the maximum number of lines to be displayed.
characters (int) - the maximum number of characters on a line.

This function will display a section of a list on the screen. The displayable area,
lines x characters, is not erased, so this function must take care of that. Each line
to be printed starts with the ANSI control code, <esc>[2K, which will erase to the
end of line. Then each string is printed. If the string is empty, then only the
control code is printed.

display list-box(xl,yl,x2,y2,lines,characters) [list.c]

Parameters
xl,yl,x2,y2 (int) - coordinates of the box around the list.
lines (int *) - returns the number of lines of the list that can be displayed at once.
characters (int *) - returns the number of characters that can fit on a line.

This function will set up the list display, and the associated segments.

55



The function starts by calculating the number of lines and characters that can be
displayed in the graphics box. Next the outer box is drawn, followed by the
scrolling arrows. Then the cursor segments are drawn, one under each text line.
These are given individual pick-ids. The cursor segments are setup as shown in
Figure 12.

Line I
Scroll Line 2 Cursor

Arrows Line 3 Segments

Figure 12: Schematic of cursor segment arrangement.

Finally, the dialog area is set up, initialising the position inside the graphics box,
and setting the lines and characters limits to the given extents.

remove_scrollabie list(lines) [list.c]

Parameters
lines (int) - number of lines in the scrollable list.

This function will delete the segments associated with the scrollable list and delete
the dialog area.

line__editor(old string,maxlength,xpos,ypos,length,charsize,lasLkey) [lineedit.c]

Parameters

old-string (char *) - string to be edited.
max-length (int) - maximum length of the string to be edited.
xpos,ypos (int) - position of the edit box in graphics coordinates.
length (int) - number of characters wide the edit box is.
charsize (int) - character set size 0-normal, 1-small.
last-key (char *) - character code of last key pressed to exit editor.

Returns
TRUE if the string has been changed
FALSE if it wasn't modified.

This function is a line editor. This allows a user to interactively modify a text
string. The string can be edited with the left/right arrow keys, insert/remove

56

S 5 - S-• .... "0lm~~•,•T~nnU lm~maum m



keys, backspace/delete keys, and alpha numeric keys. The editor is successfully
terminated when the user hits ENTER or an UP/DOWN ARROW. The edit is
aborted if the user hits ESC or the mouse button.

The function starts by making a copy of the string to be edited. This copy is
used in the editor, so the original can be restored if the user aborts. Thefunction
then checks that the last character is a space. This is necessary for the editor to
work p-,)perly, if not a space is added. This additional space at the end of a line is
used as a place hold for the cursor when it is at the end of the line.

Then the dialog area is set up, creating a dialog window the same size as the
box, but with a buffer size the size of the string. The function then creates the
overwrite indicator segment for visual display of overwrite mode. Then the
function allows the user to interactively edit the string.

The edited string is stored and displayed separately Figure 13.

Edit Command

Line Dialog

Array Area Dialog Window
/

JA I IT le ls lt l I x. - -ri. • -i:

\ /
Array Dialog Buffer

Figure 13: Schematic of storage and display of edited text string.

When a change is made to the text string, the modification is made to the
character array by manipulating the characters. The change is also made to the
dialog area by sending the correct character or control code. To delete a
character, the character is removed from the string and the space closed up. Then
the code to delete a character is sent, "[1P", to remove it from the display. The
dialog area also handles the windowing effect. The dialog window is defined to
be the size of the editing window, with the dialog buffer size set to the maximum
character string length. If the user types past the end of the window, the dialog
buffer is scrolled with the scroll left command.

reseLmode(mode.string) [lineedit.c)

Parameters
mode-string (char *) - mode reset parameters.

This function implements the ANSI control code to reset graphic attributes of the
display. The attribute being changed is defined by the mode-string parameter. It
sends the ANSI code <esc>[ mode 1.

57



set.mode(modestring) [lineedit.c]

Parameters
mode-string (char *) - mode set parameters.

This function implements the ANSI control code to set graphic attributes of the
display. The attribute being changed is defined by the mode_-string parameter. It
sends the ANSI code <esc>[ mode h.

select-graphic-rendition(mode-string) [lineedit.cI

Parameters
modestring (char *) - graphic parameters to be set.

This function implements the ANSI control code to set attributes of the text
display. The attribute to be changed is defined in the mode-string parameter. It
sends the ANSI code <esc>1 mode m.

output.via.sti(outpuLstring) flineedit.cJ

Parameters
output..string (char *) - NULL terminated string to be output to the STI buffer.

This function will output a NULL terminated string to the STI buffer by calling
the STI function sti-send-.stringO. The function is used to convert NULL
terminated strings to arrays with a length parameter, as used by STI.

set_.cursor-position(x,y) flineedit.c]

Parameters
x,y (int) - xy coordinate (origin at [1,1]) to position cursor.

This function uses the ANSI cursor-position function to set the cursor position. It
does this by sending the ANSI escape sequence to move the cursor.

get-gin-pick-report(key,x,y,seg,pick) [lineedit.c)

Parameters
key (char *) - returns the key pressed.
x,y (int *) - returns GIN cursor coordinates.
seg (int *) - returns the selected object's segment.
pick (int *) - returns the pick id of the selected object.

This function will call the STI function sti-get-gin-reportO, to read a GIN pick
report. It will only return the information needed.

58



output-char(c) flineedit.cJ

Parameters
c (char) - character to be output to the STI buffer.

This function calls the STI function sti sendstringO to output a single character.

scroll-left(n) [lineedit.cJ

Parameters
n (int) - the number of characters to scroll left.

This function implements the ANSI control codes to scroll the current dialog area
to the left "n" characters. The function uses the ANSI sequence <esc>1 number
space @.

scroll_right(n) flineedit.c]

Parameters
n (int) - the number of characters to scroll right.

This function implements the ANSI control codes to scroll the current dialog area
to the right "n" characters. The function uses the ANSI sequence <esc>j number
space A.

delete.character(n) [lineedit.cJ

Parameters
n (int) - the number of characters to delete.

This function implements the ANSI sequence delete-character. It will send the
ANSI control sequence <esc>[ number P to delete 'n' characters.

del(i,str) flineedit.cJ

Parameters
i (int) - index of character to be deleted.
str (char *) - character string to be edited.

This function will delete a character in a string. The character is deleted by
copying the rest of the string back one place onto the deleted character. If the
character is at the end of the string, the character is overwritten with a space.

59



erase-in.page(string) flineedit.cJ

Parameters
string (char *) - erase command parameter string.

This function implements the ANSI control sequence for erase-in-page. It is used
to clear the screen. The ANSI sequence is <esc>[ string J.

erase in_line(string) flineedit.cJ

Parameters
string (char *) - erase command parameter string.

This function implements the ANSI control sequence for erase-in-line. It is used
to delete to the end of a line. The ANSI sequence is cesc>[ string K.

60



Index of Functions and Subroutines

add~branch 29
add...hild 28
add-.graphic-node 45
add...graphicjiode_to_list 45
addjnodule 29
arrow 50
box 51
child-of 27
clearjdialog 27
clear-message-area 50
clear-text 50
compress-tree 31
create~displayjtree 44
create..display-jree-entry 46
createzoom..tick 52
cylinder 39
define-.macros 50
del 59
delete 30
deletescharacter 58
deleteschild 30
delete..graphic-ýnode 35
delete-.graphic-tree 35
disable~mouse 50
display-float 40
display-integer 40
displayjist 54
display-list-box 55
display-node 25
display-text 40
display-tree 36
drawjdelete-branck..icon 53
draw-delete-icon 53
draw-file-icon 53
draw-jump-module-icon 53
draw-jump..node-icon 53
draw-jump-to-top-con 53
draw-link 36
draw-newjbranchjicon 53
draw-new-dependencyjicon 53
draw...newjnodule..icon 53
draw-new-redundancy-icon 53
draw..node 36
draw...zoom_ýox 53
edit~data 38
edit~node 39

61



edit._subpma 39
enablemouse 50
erasein_line 59
erase.inpage 59
error 49
exists 34
extract-name 34
find-files 34
fixup-tree 38
free-node 42
generate-graphics 51
get-gin-pick~report 58
getinputfilenames 33
get-node 42
getoutputjfilenames 32
get-ptr 42
getyn 49
grow-array 48
hide-node 36
hide_textarea 28
hide-tree 35
highlight-node 37
indexof 43
input_data 33
insertjintarray 48
insert-ptrarray 48
interactive 24
killtree 34
line_editor 55
loadtreedata 32
main 24
make-graphic-node 46
make-graphics 46
modulise 44
move-cursor 28
movelist_cursor 54
new-graphic 46
new-node 41
new-parent 43
node-in-display-tree 45
output_char 58
output-data 31
outpuLnode 25
output.via-sti 57
putsxy 49
read-character 49
rF ad_components 35
refreshdisplay 52
remove_child 30

62



removejrom-.display-list 30
remove-scrollable-list 55
renew..display 37
replace-string 47
reset-.display 52
reset~mode 57
reset~scroll~keys 51
save first 28
save-tree 31
scroll-graphics-screen 37
scroll-left 58
scroll~right 58
scrollablejlist 53
segment-of 43
select...branch 26
select~child 25
select-graphic-rendition 57
select~module 26
select~node 26
setscharacter..set 51
setscursor-.position 57
setjile..dialog 50
setjindex~of 43
set~.mode 57
set-.parents 44
set..segment 27
set-tree..parameters 44
set-type..of 42
set..up...system 47
set-zoom 26
setup-display 51
setup-..graphics 40
setup-..mouse 50
setup~system~parameters 52
setupjtext-area 52
shellsort 41
show_text-area 28
stricmp 41
tree-fixup 38
type-..of 42
unloc~keys 53

63



SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

REPORT NO. AR NO. REPORT SECURITY CLASSIFICATION
MRL-GD-0043 AR-006-911 Unclassified

GRAFTED - GRaphical Fault Tree EDitor: A Fault Tree Description Program for Target
Vulnerability/Survivability Analysis

AUTHOR(S) CORPORATE AUTHOR
Frank J. Tkalcevic and Norbert M. Burman DSTO Materials Research Laboratory

PO Box 50
Ascot Vale Victoria 3032

REPORT DATE TASK NO. SPONSOR
November, 1992 NAV RAN

FILE NO. REFERENCES PAGES
G6/4/8-4080 5 63

CLASSJFICATION/UIMTATION REVIEW DATE CLASSIFICATION/RELEASE AUTHORITY
Chief, Ship Structures and Materials Division

SECONDARY DISTRUTION

Approved for public release

ANNOUNCEMENT

Announcement of this report is unlimited

KEYWORDS

Graphical Interfaces GVAM General Vulnerability Assessment
Computer Manuals Model

ABSTRACT

A computer program GRAFTED, "GRAphical Fault Tree EDitor", has been written to simplify data entry and
modification of component fault tree descriptions (FTD) used in military platform vulnerability/survivability
analysis procedures. GRAFTED utilises a unique, graphical, screen based data entry procedure to define and
display both individual system component parameters and their hierarchical relationship in the overall system
FTD. The generated component and system FT! output is in a format which is directly readable by the MRL
version of the General Vulnerability Assessment Model (GVAM), computer programs.

Although GRAFTED was specifically designed to generate FTDs for GVAM, it could be easily modified to
accommodate data input formats and FTD output for assessment procedures which require user friendly data
entry and graphical fault tree editing and visualisation.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED


